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To meet and respond to future challenges posed by large 
scale climate crises before they occur, it is necessary to 
begin addressing the adverse effects of the built environ-
ment by developing biological buffers or designing new 
systems to restore, replenish, and remediate ecological 
systems. Designers must pursue innovative methods to 
model, analyze, simulate, and optimize these systems, in 
order to design architecture and landscape systems that 
respond effectively to complex ecological problems occur-
ring over significant temporal and geographic scales.  As a 
result, data driven design is required to balance competing 
design criteria effectively through trade-offs to meet design 
objectives of high-performance architectural systems and is 
increasingly a requirement of design practice for the fore-
seeable future. This type of advanced computational design 
requires sophisticated models to be developed integrating 
these complicated tools in the design process for simulation 
and dynamic modeling. This type of advanced computation 
requires making use of readily available datasets defining 
weather profiles, material properties, energy performance, 
building physics, etc. that can all be used to inform the design 
process and test the suitability of design solutions. In this 
paper, a process for integrating multi-objective genetic algo-
rithms (MOGA) for design optimization driving parametric 
models and environmental simulation is discussed. Three 
student case studies from a two-semester course sequence 
focusing on ecology-centric design schemes are presented, 
demonstrating the design optimization of sufficiently com-
plex parametric models. These case studies will be used to 
demonstrate the potential for such methods to be incorpo-
rated in different aspects of the conceptual design process 
and architectural course curriculum. 

INTRODUCTION
Advanced computational methodologies are becoming a 
ubiquitous presence in the practice of architecture. With the 
recent occurrence of large scale climate crisis, from storm 
surge to coastal flooding to water scarcity to contaminated 
ecosystems, a noticeable shift is taking place away from the 
traditionally anthropocentric frame of architecture towards 
one of environmental responsivity and a directed ecology-
centric focus. In order to design for increasingly more polluted 
environments, it is necessary to gage long-term effects, and 
seek solutions to remediate, filter, or reconstruct damaged 
and lost habitat. Living systems and natural processes typi-
cally occur on much longer time scales and are more sensitive 
to long-term shifts in climate or environmental context than 

are normally considered within architecture or landscape 
design. Long term systems outside of normal human spatial 
or temporal scales, such as representing life cycles or global 
energy flows, can be difficult to assess with existing models or 
methods for design. [1] This suggests anticipating forces that 
cannot be readily observed by human senses, requiring the 
use of sensors to gather empirical data over time in the physi-
cal world, or developing predictions based on sophisticated 
computer models and simulation in a digital environment. 
This concept of an ecosophical approach to design [2]; as 
spatial environmental experiences, reclaimed ecological ter-
ritories, and performative environmental systems (Figure 
1); has led to a similar shift in practice towards environmen-
tal performance, ecology and autonomous design, driving 
the introduction of new methods to analyze and develop 
solutions to the types of complex problems posed by ecology-
centric design. In preparation for the emerging challenges of 
a changing design profession, it is necessary to be able to 
understand and integrate multiple streams of climatological 
and environmental analysis data in the design process, so 
that better assumptions can be made about design perfor-
mance and the long-term effects of the built environment on 
ecological systems. As a result, simulation and data analysis 
techniques are becoming increasingly more important to the 
realization of holistic design projects. This increasing role of 
performance criteria in the design process, such as energy 
efficiency and environmental performance, requires better 
computational tools for building energy modeling and build-
ing information modeling to validate design assumptions. 
This research investigates the application of an algorithmic 
design-optimization process by applying genetic algorithms 
in the analysis of complex modeling operations, and inte-
grating advanced simulation techniques during preliminary 
schematic design phases, where the greatest performance 
benefits can be achieved [3].

BACKGROUND
The work discussed here explores several biological and 
ecological analogues explored by students as case studies 
of form expressed as computational morphology for the 
application of multi-objective genetic algorithm (MOGA) 
design-optimization, representing a continuation of work 
seen previously in [4] and [5]. Like these previous examples, 
these geometric studies are pursued as highly rationalized 
systems for complex interactions of energy and material 
exchange present in natural systems. Through an intelligent 
aggregation of material, the performative characteristics of 
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surfaces and material systems are creatively controlled to 
promote different structural logics, thermodynamic prop-
erties, or fluid dynamic affects. Since these geometries are 
produced by algorithmic operations, the parametric inputs 
controlling these models are flexible and can be efficiently 
modified autonomously by an optimization process. This 
does not mean that the designers must entirely relinquish 
control to an algorithmic process. In fact, design optimization 
is a highly deterministic process that can have very different 
outcomes based on the subjective values of the individual 
programmer when selecting criteria to be given priority in the 
model. Simply favoring one set of criteria over another can 
result in dramatically different solutions, both quantitatively 
and qualitatively. 

Rather than pursuing a more subjective notion of perfor-
mance, typical to most architectural studio courses, a more 
straight-forward rule based approach to design [9] is pur-
sued as a fluid segue into algorithmic design analysis and 
optimization during an introductory course on parametric 
modeling. By establishing straight-forward and repeatable 
rules for the design process, the task of ascribing genetic 
algorithms to the process during the second semester course 
is simplified for students. From an ecological perspective, it 
is necessary to step outside of the typical anthropocentric 
focus by approaching the design process without precon-
ceptions, defaulting to typical practices, or relying on design 
tendencies, by instead allowing the simulation to derive as 
many solutions as possible that may likely have gone uncon-
sidered; rather than trying to approach the process with a 
preconceived notion of a “preferred outcome” and attempt 
to “force” a simulation to confirm a desired solution that has 
already been predetermined. It is necessary to resist the ten-
dency to pursue initial aesthetic solutions that are perceived 
as optimal geometries, and instead actively test potential 
geometric solutions through computation to understand 
and predict future performance. In order to move from an 
area of design where solutions are assumed to work into a 
domain of reasonable expectations that a given design will 
perform as desired, design optimization processes can be 

useful tools to align expectations and supply much needed 
feedback to the design process. Unlike a completely subjec-
tive design process that only prioritizes the concerns of the 
designer, a synthetic design process provides the designer 
with necessary resistance to balance personal preferences 
against design requirements.

METHODS
For these studies, a framework was established for simulating 
architectural design conditions, and assessing useful design 
performance metrics. With the intention to extract a useful 
design analysis from the simulation, an appropriate test for 
“fitness” must first be established. If the objectives of the 
optimization study are two simple or needlessly complex, 
appropriate solutions cannot be reached successfully. For 
this reason, it is important to carefully select and define fit-
ness values and limit the bounds of the simulation. Once the 
model is setup correctly, an optimization process can be run 
to generate a solution. (Figure 2)

Before connecting an evolutionary solver to the model, a 
graphical matrix is established representing the range of 
model variability. This allows the bounds of the study to 
be clearly defined, as well as run a first-pass test of the full 
range of geometry in the model looking for major errors or 
excluding invalid geometry that will disrupt the function of 
the evolutionary solver during the simulation. Once trouble-
shooting is complete and the model is successfully tested, 
the input variables and output fitness values can be attached 
to the evolutionary solver. Once the simulation begins the 
solver runs the genetic algorithm and tests possible solutions 
in terms of fitness. Here, the Octopus evolutionary solver 
component for the Grasshopper plugin is used instead of the 
native Galapagos solver, so that multiple fitness values can be 
brought in to run a MOGA process and multiple variables can 
be tested against each other during the optimization process. 
[10] The first design optimization process is then allowed to 
run for several generations at a reasonable population size, 
until a Pareto Front can be observed in the graphical interface. 

It is important to start with enough parametric flexibility in 
the original model so that issues can be clearly identified, and 
parameters of the simulation can be narrowed and refined in 

Figure 1: The Mediated Motion weather system [6], Lost in Paris green 
façade/landscape [7], green wall for indoor air phytoremediation [8].
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Figure 2: Showing an iterative process for form generation, data analysis and 
design optimization.

Figure 3: Bio-inhabitation of the artificial reef structure over time by oceanic flora and fauna (top). 
Design optimization process of the overall reef structure in relation to local ocean currents and 
distribution of l-system geometry (bottom). Student: Xiaoyu Wu.
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future iterations. During this first pass, negative results are 
not only useful but also desirable, revealing problems with 
the simulation and helping to troubleshoot issues that might 
become greater problems later-on. Since the simulation is 
running a minimization process through the Octopus solver, 
solutions closest to the origin on the graph are then selected 
and the parameters of these solutions are used to reduce the 
global geometric range of the parametric model, so that the 
next optimization process can be run with a tighter simula-
tion focus. By first starting with a loose geometric range, the 
evolutionary solver is allowed to direct the simulation focus 
towards the best possible range solutions, rather than being 
constrained around a desired outcome from the start by the 
person running the simulation. This also helps avoid common 
problems that can be avoided with a good simulation setup, 
providing a reasonable degree of confidence that the solution 
will fall within the parameters of the simulation and can be 
correctly determined [11]. This preliminary study is focused 
on developing a clear and iterative parametric framework, 
which can be built upon in the future, representing the three 
fundamental steps in the design process:  Design --> Analysis 
--> Synthesis. The optimization process is then run at least 
two to three more times, adjusting the parametric range and 
extents of the simulation with each pass, ultimately resulting 
with a good selection of solutions within the optimal range of 
performance sought by the study.

FILTERING REEF STRUCTURE FOR COASTLINE 
RESTORATION
In this case study, a deployable system for coral reef restora-
tion is proposed to restore portions of reef or other costal 
ecosystems that have been devastated by coral bleaching or 
other increasingly prevalent climate crisis events. Artificial 
reef systems studying the biomimetic growth of reaction 
diffusion geometries studied previously by [12] and differ-
ential growth geometries of coral [13], were investigated 
as an efficient double-sided surface geometry for restoring 
reef systems, by providing surface area for sea life to anchor 
themselves to while creating an ecological buffer, filtering 
and cleaning contaminants from the ocean. These complex 
geometries were then developed to provide a maximum 
amount of available surface area for inhabitation by various 
species of corals and oysters to reinforce the structure and 
provide habitat for other forms of aquatic sea life.  In order to 
distribute these reef structures effectively and interact with 
a maximum area along a coastal system, A series of L-system 
algorithms were selected and programmed into the model 
for the macro geometry of the reef system as semi-random 
branching reef structures arrayed along a site on the Alaskan 
coastline. These geometries were then used as the focus of 
the optimization process to increase reef area while avoiding 
collisions in the distribution of these branches, and maximize 
the interaction of the system with ocean currents for filtra-
tion as an ecological buffer. The MOGA optimization process 

Figure 4: Visualization of 
ecological inhabitation 
over time (top), 3D printed 
design concept model 
( bottom left). Design 
optimization process for 
interlocking columnar 
geometry (bottom right). 
Student: Milton Major.
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was then applied to the analysis of the overall form of these 
branching reef structures. In this case, each reef structure 
was given a unique l-system definition and the optimization 
process was used to determine the individual parameters of 
each l-system to avoid conflicts, rather than using one sin-
gular definition that would simply branch without collisions 
(Figure 3). Input parameters for adjusting geometry included: 
branching angles, branch growth length, and vectors of 
growth. These input parameters were then attached to the 
multi-objective evolutionary solver, and performance values 
were selected to assess the fitness of solutions generated by 
the parametric model; such as angles of incidence between 
branches and coastal wave patterns, structural proximity, and 
total surface area. 

NESTING HABITAT FOR MIGRATORY BIRDS
Due to increasing urban development, especially along coast-
lines, habitat loss for migratory birds is an increasing concern. 
In this case, providing vertical nesting area separate from 
human intervention that could develop and add biological 
diversity over time was selected as an ideal morphological 
solution to this problem. For this study agent-based vector 
paths were applied as a generative process for form devel-
opment, similar to the method in [14], resulting in a tower 
structure separating human visitors to the site from migra-
tory birds nesting at the top of the structure. In this case 
study, agent vectors are attracted to central gravitational 

point before being drawn along a vertical vector creating a 
vertical structure reminiscent of volcanic structures observed 
in basalt columns.

Due to the verticality of the final form, structural integrity 
was of particular concern, this criterion was then balanced 
against aesthetic desires for openness in the system, as well 
as allowing solar access down into the center of the form. To 
optimize the structural networks between columns and bal-
ance the structural concerns against competing aesthetic and 
ecological criteria, the genetic algorithm was applied to find 
optimal structural solutions. To resolve the structural logics 
of the form, a novel application of dynamic simulation and 
real-time physics simulation was integrated into the design 
optimization process. In this case, a dynamic physics model 
was developed using the Kangaroo Physics component to 
allow columns to be drawn together dynamically in places 
of proximity due to attracting forces during each iteration. 
Additionally, simulating solar exposure of the resulting geom-
etry were incorporated into the workflow similar to [15]. The 
graphs comparing structural interconnectivity, openness, 
and solar exposure from the iterative optimization process, 
along with the geometries resulting from the study can be 
seen in Figure 4.

Figure 5: Showing 
the original range of 
geometric variability 
of the parametric 
model (top left). 3D 
printed model of 
final selected ge-
ometry (top right). 
Multi-stage design 
optimization of 
deployable floating 
structure showing 
selected final 
optimal solutions 
(bottom). Student: 
Zhenhuan Li.
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DEPLOYABLE BIOREMEDIATION ISLAND
Another ecological concern with polluted ecosystems is the 
challenge of filtering contaminants in post-industrial areas, e.g. 
industrial pollutants such as Polychlorinated biphenyls (PCBs) 
that build up in riverbeds, which represents a significant risk 
to certain species of fish making them unsafe for human con-
sumption. For a design concept focused on removing PCBs from 
contaminated riverbeds, a structural logic to generate form 
for floating islands was developed based on a radial cluster of 
curves as a framework for generating the globular geometries 
seen in Figure 5. This potential solution based on the concept of 
a floating archipelago of bioremediation islands, similar to sys-
tems used to dredge artificial islands, would vacuum sediment 
from the riverbed and employ plants and biological agents 
to break down harmful chemical compounds and remediate 
the contaminated soil for reintroduction to the riverbed or 
for agricultural use. The curves used to derive geometry were 
constructed along a series of anchor points used to generate 
semi-random geometries. An analysis matrix representing the 
range of geometry possible in the parametric model can also 
be seen at the top left in Figure 5. As the anchor points are 
adjusted at random, new formal possibilities are generated 
and then analyzed for flatness, solar exposure, and volume in 
the three stages of the iterative design optimization process 
shown at the bottom of the Figure. The optimization process 
allows for hundreds of tests of intermediate geometries using 
a genetic algorithm to narrow down the range of possibilities 
to a small focus area.

RESULTS AND DISCUSSION
The work discussed here represents results from a two-
semester course sequence focused on ecological design and 
parametric computation. This course sequence poses a fun-
damental question, “how can you determine quantitatively if 
a design is successful?” This is quite different than asking if a 
design is pleasing. Simply by asking if a design will in fact pro-
duce the results it promises and perform as expected, has a 
dramatic effect on the design process. It is common practice 
to speculate on the implications of a given design; however, it 
is a significantly more difficult challenge to show that a design 
will operate as proposed. This by necessity requires a combina-
tion of environmental simulation and iterative design, to allow 
simulated performance values to invalidate design solutions. 
Instead, students must actively work to correct problems and 
continuously refine geometry until a successful solution is 
reached. Using project work from design studios as case stud-
ies, students are introduced to advanced computational design 
techniques and methods for analysis and simulating design 
performance.

It can be difficult for students to quickly pick-up the neces-
sary skills to apply basic environmental simulation to their 
own work, while adapting to a more rigorous design process 
required to produce repeatable results and develop working 
design optimization models. Students must be prepared to 

set rules for their own design process, and adhere to those 
rules closely enough to reproduce results. This can be difficult 
for students familiar with more subjective design processes. 
Similarly, a base understanding of specific knowledge related 
to the ecological design focus, as well as knowledge specific to 
the environmental simulation or any metrics a given simulation 
is calculating must first be understood in order to avoid com-
mon errors and interpret results. To overcome such a steep 
learning curve, a two-week boot camp is necessary to begin 
the course sequence to introduce students to the software and 
the possibilities and the capabilities the software offers, so that 
many common obstacles to developing a working fluency with 
the software can be avoided. This allows students to steadily 
build a fundamental level of comfort with the process on a day 
to day basis rather than forgetting important content during 
the week to week delay required for a semester long course. 

Once students have an idea of what the software is capable 
of they can return to a technique or method and figure out a 
specific script as the need arises. Since it is easy to listen to an 
explanation of a given script and quickly forget that knowledge 
after it is no longer useful, it can be difficult for students to 
develop in-depth comprehension until they have made use of 
that script in their own design work. For this reason, it is more 
important to give students a varied and detailed overview, so 
that they can start beginning to envision uses and applications 
for the software platform, that can then be explored in detail 
as necessary. Working with a computer simulation and allow-
ing an algorithm to calculate a solution and guide the design 
process can be frustrating. However, once such a connection 
is made between the process and an actual design problem, 
and the software is used to greatly improve the efficiency of 
completing a challenging task or reduce time commitments 
for difficult modeling operations, then the software becomes 
invaluable, and designers will explore the software farther 
than they would have initially during a more formal tutorial. 
This proved to be a significantly more successful format than a 
drawn out weekly course. If students are not building compe-
tency in the software daily, especially at the introductory level, 
it is quite easy to forget any new skills they learned during a 
single class period waiting an entire week before returning to 
the material during the next class in a weekly course format. 
Finally, the course sequence is followed up with a seminar on 
design-optimization, once they have developed a foundation 
with the subject matter.

CONCLUSION
In order to design outside of the typical anthropocentric focus 
of architecture, it is necessary for designers to incorporate 
methods that shift the focus of design towards longer term 
design performance and challenge the personal and aesthetic 
preferences of the designer. In this way, design optimization can 
be antagonistic to typical design traditions, requiring an atypi-
cal iterative design process to effectively control the simulation 
and respond to specific performance criteria. As seen with 
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the three case studies discussed, MOGA optimization can be 
applied in significantly novel ways to effectively provide impor-
tant data feedback for many aspects of a given design concept 
at any stage of development in a design studio course sequence, 
especially during schematic design phase where designers have 
more flexibility with massing and overall geometry. As a tool for 
informed design, this allows designers to assess complex envi-
ronmental performance and ecological problems that cannot 
be effectively addressed with more traditional design proce-
dures. It can be difficult for designers to relinquish this much 
control over the design process. Design optimization depends 
on variability, so if an optimization is restrained and there is no 
wiggle room for the computer to find a different solution, and 
any results may ultimately only reinforce the assumptions of the 
programmer; however, benefits of pursuing such a process can 
be seen in the final design and easily understood. Essentially, by 
allowing the computer to invalidate design assumptions, new 
and innovative design solutions can emerge unexpected, which 
meet initial design requirements while providing higher levels 
of performance. Rather than trying to force poor performing 
design concepts developed primarily for pragmatic and aes-
thetic solutions to perform efficiently, simulation can be used 
to provide designers with real time feedback on the impact 
of their design decisions on multiple metrics of performance. 
This shows the opportunity for data driven design to help 
avoid many of the common problems inherent in traditionally 
anthropocentric design processes, and the potential for finding 
solutions to emerging challenges facing the built environment.
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